Форма входа

Меню сайта
Категории раздела
Мои статьи [1]
Усилители КВ и УКВ [20]
Для начинающих [11]
Мини - чат  
Главная » Статьи » Усилители КВ и УКВ

СХЕМЫ УСИЛИТЕЛЕЙ МОЩНОСТИ КВ НА ГУ-43Б И 2-х ГУ-74Б.

Для просмотра эл. схемы в реальном размере, кликните по ней левой кнопкой мышки.

 
 

КВ усилитель мощности на ГУ-43Б 
  
TV2 - трансформатор 12.6V х 100 ватт.
TV1 -17 витков в два скрученных провода диам. 0.75мм на кольце M2000HH 32*20*6 мм.
Раздвигая витки на трансформаторе TV1, добиваемся КСВ по входу не более 1,2 1.5 - 28 MHz

С10 - С22 - Емкости входящие в состав панели лампы.
TV3 - трансформатор с габаритной мощностью 60 - 100 ватт.
M1 - Вентилятор на 180 м3/ч.
M2 - Вентилятор на 100 м3/ч.
PA1 - Индикаторная головка на 1mA.
C1 - C4 -10 КV.
C7 - K15У-1 - 6kV, 10-15 Квар ( как минимум 3-х кратный запас по напряжению и мощности).
C9 -10-270 пФ с воздушным зазором между пластинами не менее 3 мм.
C5 - 1 кv - желательно керамический.
SA1 - 220V 15A.
FU3 -1A. 
VT1 - KT839A на радиаторе.
DA1 - KR142EH9 24 V.
R4 - 20-30 ватт.
R2 - составлен из соединенных параллельно  резисторов
типа ОМЛТ 2W, и расчитан на сопротивление 50 или 75 Ом, 25 -70вт.
VD2 -VD13, VD16-VD18, VD30,VD33 - KД226Д или другие (1.7A-800V).
VD19 -VD27 - стабилитроны Д816Д (47V - 110 mA).
VD28 - стабилитрон Д817Б (68V - 75 mA).
L1 -5 витков, диаметром провода 1мм, на керамическом каркасе 10 мм, шаг 1 мм.
L2 - Анодный дроссель, намотан проводом диаметром 0.5 мм на керамическом
каркасе диамтр. 30 мм. Витки намотаны четырьмя секциями, расстояние между
секциями 5 мм.
Начиная с горячего конца, в 1-й секции мотается 11 витков, с шагом 1,5 -2 мм.
Вторая секция содержит 14 витков виток к витку.
Третя секция  содержит 21 виток к витку.
Четвертая секция содержит 70 витков к витку.
L3 - Катушка на 28 MHz выполнена из медной трубки, диаметром 6,5 мм,
на оправке диаметром 50мм, с шагом 5-6 мм. 
L4 - Катушка 21-14 MHz намотана медной шиной 5х2 мм, с шагом 2 мм. 6.3 витка
на оправке диаметром 50 мм. Отвод от 2 витка и 5 витка.
L5 - 7-3.5 MHz - 17 витков проводом 3мм  на керамическом каркасе 50 мм.
Отвод от 7-го витка.

R3 - номинал подбирается производя измерения на VD28 и достижения тока ~10 mA.
R6 - номинал подбирается производя измерения на VD19-27 и достижения тока ~20 mA.
R4 - номинал подбирается для установки стрелки на измерительной головки «0» PA1.
R13 - производиться регулировка экранной сетки в режиме покоя 80 mA, оптимально 15-25 mA.
 
P.S.
Данная схемотехника не моя, но проверена и работоспособна.
В данной схеме можно применить лампы ГУ-34Б, ГУ-74Б, соответственно изменив при этом
питающие напряжения, согласно паспорта на ту или иную лампу.
Приминение широкополосного тр - ра на входе УМ являеся компромиссом, и годится только
для ленивых, лучше применить ФНЧ на каждый диапазон.
Нужно предусмотреть защиту экранной сетки, в случае пропадания анодного напряжения,
снятием напряжения с последней, а так же в цепи управляющей сетки, регулировать
смещение не подстроечным резистором R13, а цепочкой стабилитронов, что обеспечит
более надежную работу УМ, в плане "самовозбуда". Для работы на 160м, необходимо
добавить 10 - 15 витков в П - контуре.  При использовании УМ с "Буржуйским"
трансивером, не катят антенные реле типа "ЖАБА" и им подобные, так как время переключения
таких реле, очень большое.  de  UX7MX.
 
 
Линейный усилитель мощности на двух ГУ-74Б

А.КУЗЬМЕНКО, RV4LK, г. Ульяновск.

Типовой режим ГУ-74Б для усиления однополосного сигнала
Напряжение накала, В-12,6
Напряжение анода, В-2000
Напряжение второй сетки, В-300
Ток анода в режиме покоя, мА-300
Ток анода (постоянная составляющая), мА-500
Ток первой сетки (постоянная составляющая)0
Ток второй сетки (постоянная составляющая), мА-10
Выходная мощность, Вт-500
Уровень комбинационных частот третьего и пятого порядков, дБ-28
Напряжение первой сетки, В-35


Основные параметры усилителя мощности на двух лампах
Диапазоны, МГц:1,8; 3,5; 7,0; 10,0;14,0;18,0;21,0; 24,0; 28,0
Входное сопротивление Ом-50
Выходное сопротивление Ом-50
Входная мощность, Вт-30
Выходная мощность, Вт-1000
Уровень комбинационных частот третьего порядка, дБ-32
Мощность, потребляемая от сети, Вт-2450
КСВ во входной цепи, не более-1,3

В последнее время радиолюбители больше внимания уделяют конструированию усилителей мощности, нежели трансиверов, хотя немногие энтузиасты создают аппараты, достойные пристального внимания. К построению мощного, надежного и качественного РА следует подходить очень серьезно, так как здесь нет мелочей, и любая погрешность в его проектировании и изготовлении надолго отравит жизнь вам и вашим соседям.
Основное правило при конструировании РА: все детали должны иметь максимально возможный запас по надежности (электрической прочности). Конечно, каждый исходит из своего опыта, возможностей и намерений. Для обеспечения достаточной надежности и долговечности усилителя ни одна деталь, вплоть до сопротивления в цепи смещения, и особенно электроды лампы (у тетродов самое слабое место — экранная сетка), не должна рассеивать мощность более 70% от максимально допустимого паспортного значения. То же самое относится к допустимым величинам значений напряжений и токов.
Больше всего радиоаппаратура и радиодетали не любят перегрева, от него происходит их быстрое старение. Особенно это относится к радиолампам, так как при перегреве из их электродов выделяются остаточные газы, наибольшее же их количество — из анода, может произойти внутренний пробой, и лампа выйдет из строя.
Предлагаемый вашему вниманию усилитель выполнен на двух лампах ГУ-74Б по схеме с общим катодом.

Причины, почему РА выполнен на лампах, очевидны. Об этом неоднократно писалось, в том числе и автором [1].
Технические характеристики лампы ГУ-74Б довольно высоки, а типовой режим для усиления однополосного сигнала (для одной лампы) приводится ниже.
Принципиальная электрическая схема усилителя мощности приведена на рис.1, а схема блока питания — на рис.2.
Уровень комбинационных частот — меньше, чем в типовом режиме, из-за улучшенной стабилизации напряжения экранной сетки.
Входной сигнал через ВЧ-разъем XW1 (рис.1) и контакты реле К1.1 поступает на два фильтра низших частот (ФНЧ) с частотой среза 32 мГц [2], которые имеют вид П-контуров и состоят из индукивностей L4 и L5. Их входные и выходные сопротивления равны 100 Ом.
По входу усилителя они соединены параллельно, следовательно, входное сопротивление РА равно 50 Ом. На схемах отсутствуют входные и выходные конденсаторы ФНЧ по 60 пФ, реально же они присутствуют, хотя и в неявном виде.
Входная емкость фильтра — это емкость кабеля, которым трансивер соединяется с РА, плюс емкость монтажа и емкость контактов реле К1.1, в сумме она составляет 120 пФ.
Погонная емкость коаксиального кабеля РК50-3-13 — 110 пФ на метр. Следовательно, длина кабеля, соединяющего трансивер с РА, должна быть порядка 90 см.
Более точно длина кабеля подбирается по минимуму КСВ между трансивером и РА, что соответствует максимальной раскачке усилителя.
Выходная емкость каждого ФНЧ — это входная емкость лампы, равная 55 пФ, плюс емкость монтажа, равная примерно 5 пФ, в сумме получается 60 пФ.
Следовательно, условия работы фильтра низших частот выполняются.
Применение ФНЧ полезно сразу по нескольким причинам. Первая — уменьшение уровня высших гармоник, вторая — компенсация емкости коаксиального кабеля, соединяющего РА с трансивером, длина которого не должна превышать 0,1X самого высокочастотного диапазона, т. е. одного метра. При выполнении этого условия кабель, работает как емкость и не трансформирует входное сопротивление усилителя. В-третьих, ФНЧ компенсирует входную емкость лампы, вследствие чего RBX усилителя становится частотно-независимым, и амплитуда возбуждения не падает с возрастанием частоты. Без ФНЧ на ВЧ-диапазонах она упала бы более чем на 50%, так что применение фильтра низших частот более чем оправдано.
ФНЧ нагружены на резисторы R7...R13 и R14...R20 соответственно.
С этих резисторов через антипаразитные цепочки R5-flp6 и R6-flp7 ВЧ-напряжение поступает на управляющие сетки ламп VL1 и VL2 соответственно.
Лампы включены по схеме с общим катодом, усиление каждой лампы равно 500/15 = 33 раза по мощности, или примерно 15 дБ. На НЧ-диапазонах выходная мощность на 10... 15% больше 1000 Вт, на ВЧ — меньше на те же 10... 15%.
Для питания анодной цепи применено последовательное питание.

Хотелось бы отметить, что применение в П-контуре шарового вариометра очень желательно, так как он позволяет на всех диапазонах оптимально согласовать сопротивление нагрузки ламп (Roe) практически с любой "веревкой" без применения дополнительного согласующего устройства.
(П-контуру действительно свойственно работать в широком диапазоне сопротивлений, однако не стоит отходить от хороших традиций профессиональной радиосвязи, когда усилители мощности класса 1 кВт и более подключают к антенне через согласующие устройства. В этом случае усилитель всегда нагружен на ту нагрузку, на которую калибровался, что приводит к лучшей фильтрации П-контуром гармоник передатчика и меньшему выделению тепла).
Анодное напряжение через разъем XW3 (рис.1), расположенный на задней стенке корпуса РА, фильтрующую цепочку Др5-С 16-Др4-С 15, резистор R4, катушки П-контура и антипаразитную цепочку flp1-R2 поступает на аноды ламп
Коммутация диапазонов — релейная. Их переключение производится переключателем S3, который расположен на передней панели усилителя.
На диапазонах 160 и 80 м к анодному и антенному конденсаторам переменной емкости при помощи реле подключаются дополнительные конденсаторы, емкость которых окончательно подбирается при настройке.
На расстоянии 45 мм от антенного разъема XW2, поверх коаксиального кабеля, соединяющего этот разъем с контактами реле К2 и КЗ, установлен КСВ-метр конструкции EU1TT [3]. Резисторы R30 .R32 служат для снятия статического потенциала, который образуется на переменном конденсаторе С12 Конденсаторы С2 и С4, каждый из которых образован 10 проходными конденсаторами, расположены прямо на ламповой панельке, которая может быть как фирменной, так и самодельной.
Коммутация прием-передача усилителя осуществляется при помощи электронного ключа, выполненного на транзисторах VT1 и VT2, управляемого через разъем XS1 электронным ключом или реле, находящимися в трансивере Светодиод VD13 индицирует момент перехода усилителя в рабочий режим (усиление сигнала трансивера в режиме передачи.
                        
                                                     Схема УМ
 
 
 
 
 
                                      Схема блока питания






Конденсатор СЗЗ установлен для того, чтобы импульс случайной наводки не переключил РА в режим передачи. Цепочка R33-C34 служит для создания задержки при включении реле К1, для того чтобы успело сработать реле КЗ, которое хоть и быстродействующее, но замыкающие контакты у него массивнее, чем у реле К1. Это сделано для того, чтобы в первые мгновения работы РА он не остался без нагрузки (антенны).
Так как многие импортные трансиверы в первые 20 .30 мс выдают 100% выходной мощности вне зависимости от положения ее регулятора, то в случае, если реле КЗ не успело бы сработать, и РА в момент подачи с трансивера 100% мощности раскачки остался бы без нагрузки, обе лампы, да и не только они, могли бы выйти из строя.
Резистор R4 (рис 1), кроме того, совместно с резистором R22 в блоке питания (рис 2) ограничивает ток при простреле лампы до значения 2100/(28+10)=55 (А). Диоды КД203Г, которые стоят в высоковольтном выпрямителе, кратковременно его выдержат и не выйдут из строя.
Ток анода индицируется головкой РА2 (рис.1), которая расположена на передней панели усилителя мощности, как и РА1, которая индицирует токи сеток ламп VL1 и VL2.
В положении переключателя S1, которое показано на схеме, индицируется суммарный ток экранных сеток ламп VL1 и VL2. Во втором положении индицируется ток управляющей сетки VL1 или VL2, в зависимости от положения переключателя S2. В показанном на схеме положении переключателя S2, индицируется ток первой сетки лампы VL1. Линейный режим работы ламп VL1 и VL2 характеризуется отсутствием токов управляющих сеток, следовательно, амплитуда возбуждения не должна превышать по абсолютной величине наименьшее из двух напряжений смещения этих ламп.
R23 — шунт, который подключается параллельно микроамперметру при измерении тока экранной сетки, он подбирается на простейшем стенде, хотя его сопротивление можно и рассчитать. Диаметр провода шунта не должен быть меньше определяемого по формуле:
что вытекает из требований долговременной стабильности при прохождении через него рабочего тока.В нашем случае, если принять максимальный ток через шунт равным 0,1 А, диаметр провода шунта должен быть не менее 0,3 мм.
Ток экранной сетки надо контролировать постоянно в процессе эксплуатации РА, так как он характеризует работу усилителя в целом. Чтобы можно было заметить обратный ток экранной сетки, стрелку головки РА1 изначально следует установить на 10..20% вправо от нуля.
Еще лучше применить РА1 с нулем посередине резистор. R21 отводит на землю напряжение динатронного пробоя. Предохранитель FU1 совместно с варистором R33 (СН-2а, на 330 В) защищает экранные сетки и их цепи от напряжения пробоя при простреле ламп.
Очень хорошо вместо варистора R33 установить разрядник или варистор фирмы Siemens, способный поглотить энергию заряда конденсатора С12 при пробое (простреле) лампы. К сожалению, это достаточно дефицитная деталь.
Хотелось бы подробнее остановиться на освещении динатронного эффекта, так как, судя по дискуссиям радиолюбителей в эфире, у них нет до конца ясного представления об этом явлении.
Что такое динатронный эффект? Это притягивание и поглощение одним электродом лампы вторичных электронов (то есть выбитых из другого электрода лампы основным потоком электронов, летящих от катода к аноду). Следовательно, применительно к тетроду, мы можем иметь динатронный эффект как анода, так и экранной сетки.
Динатронный эффект анода происходит, если напряжение на экранной сетке в силу ряда причин (перекачки, слишком большой анодной нагрузки, при неправильном изготовлении или настройке П-контура, повышенном напряжении экранной сетки) становится больше напряжения на аноде, то есть потенциал экранной сетки становится выше потенциала анода. В этом случае вторичные электроны, выбитые из анода, притягиваются экранной сеткой, и ее ток резко возрастает и становится больше тока анода, который сильно уменьшается. Происходит перераспределение токов.
Это аварийный режим, и если нет защиты, из-за перегрева экранной сетки, лампа выйдет из строя.
Динатронный эффект экранной сетки, проявляющийся у мощных генераторных радиоламп, заключается в том, что вторичные электроны, выбитые из экранной сетки, притягиваются анодом. В этом случае образуется обратный ток экранной сетки, при этом ее ток уменьшается, напряжение на ней может возрастать в случае применения обычного последовательного стабилизатора экранного напряжения.Ток анода возрастает, напряжение на экранной сетке увеличивается до недопустимых пределов. Это также аварийный процесс.
Поэтому проще применить параллельный стабилизатор экранного напряжения, но простой и качественный параллельный ламповый стабилизатор автор пока не разработал и поэтому применяет последовательный, с резистором R41 (рис 2), что для обратного тока эквивалентно параллельному стабилизатору напряжения.
Если в цепи катода каждой лампы установить безындукционные резисторы 10 35 Ом мощностью 12 25 Вт, то ток покоя у каждой из ламп можно установить порядка 150 200 мА, суммарный ток покоя будет равен 300 400 мА (при большей величине резистора меньший ток).
При этом на 30 50% возрастет выходная мощность. Линейность за счет отрицательной обратной связи несколько увеличится, но мощность раскачки возрастет до 60 100 Вт.
В этом случае идентичные по характеристикам радиолампы можно не подбирать.
Схема блока питания показана на рис 2.
Светодиод VD1 индицирует включение усилителя в сеть переменного тока. Сетевой фильтр включен в сеть переменного тока постоянно. Он состоит из двух дросселей Др1, Др2 и конденсаторов С1 С2.
Переключатель S1—это мощный щеточный переключатель, состоящий из четырех галет, расположенных на одной общей оси. С его помощью обеспечивается нужный порядок включения и выключения РА.
Те , как обычно, сначала включают вентилятор, затем накал ламп и отрицательное напряжение смещения, делается выдержка в течение 5 мин, затем включается анодный выпрямитель, и в самом конце подается напряжение на экранную сетку. Снятие напряжений питания происходит в обратном порядке. Перед окончательным выключением РА из сети переменного тока, надо дать вентилятору поработать около пяти минут. Вентилятор может быть включен в дежурный режим (на пониженные обороты) тумблером В1. Когда контакты тумблера замкнуты, вентилятор работает на полных оборотах, при приеме и передаче. Если контакты тумблера В1 разомкнуты, то реле К11, управляемое электронным ключом, включает вентилятор на полные обороты только во время передачи.
При помощи тумблера В2 расположенного на передней панели, и реле К14 на лампы можно подать 50 и 100% анодного напряжения. 50% величины анодного напряжения — это режим настройки при котором можно легко превысить допустимую мощность рассеяния на аноде лампы, а следовательно, для лампы это очень нежелательный режим работы, при котором она может выйти из строя.
Реле К12 и резистор R43 обеспечивают плавное включение накального трансформатора Т1 и трансформатора Т2, который обеспечивает получение напряжений накала ламп для стабилизатора экранного напряжения (-6,3 В и -12,6 В), самого экранного напряжения (+300 В) напряжения смещения (-105 В), напряжений для питания реле (+27 В ) и электронного ключа (+12 В).
Резисторы R6, R9 предотвращают пропадание напряжения смещения на управляющих сетках ламп VL1 и VL2 в момент нарушений контактов движков переменных резисторов R4 и R7, которыми выставляют напряжение смещения для каждой лампы в отдельности, что совершенно необходимо при параллельной работе ламп, особенно с высокой крутизной. Кроме того, в момент коммутации реле К13 на первых сетках ламп никогда не будет отсутствовать напряжение смещения, а резисторы R5 и R8 не позволят при вращении движков переменных резисторов R4 и R7, в момент регулировки напряжения смещения, ошибочно установить его равным нулю.
Стабилизатор напряжения смещения — параметрический, собран на стабилитронах VD11 VD17, но при желании можно получить его повышенную термостабильность, выполнив стабилизатор на 10 стабилитронах Д818Е.
То же самое относится и к стабилитрону VD36 КС650, его также можно набрать из 16-17 стабилитронов Д818Е. Стабилизация напряжения экранной сетки при этом не ухудшится, так как дифференциальное сопротивление стабилитрона КС650 и суммарное дифференциальное сопротивление цепочки стабилитронов Д818Е, примерно равны между собой. Это может понадобиться, если стабилизаторы расположены рядом с сильно нагревающимися деталями (например лампами).
Анодный выпрямитель собран на трансформаторе ТЗ.
Для регулировки величины выпрямленного напряжения применяется отвод от средней точки. Реле К15 и резистор R23, служат для плавного включения ТЗ в сеть переменного тока. Цепочка R42 С10, служит для демпфирования переходных процессов при включении и выключении трансформатора ТЗ.
Анодный выпрямитель работает на емкость С12, в качестве которой применен неполярный конденсатор. К нему надо относиться с осторожностью, так как это очень опасная часть схемы. Поскольку у С12 очень маленький ток утечки, он может сутками сохранять смертельно опасное для жизни напряжение, если у него нет цепи разряда, например когда обе защитные (разрядные) цепочки из резисторов R24 R27 и R28 R32 оборваны.
Величина анодного напряжения и разряд конденсатора С12 контролируются вольтметром РА1, но в любом случае при снятии верхней крышки и по окончании разряда конденсатора желательно произвести проверку на наличие остаточного напряжения, замкнув конденсатор С12 отверткой на корпус.
При анодном напряжении 2200 В и емкости конденсатора С12 равной 100 мкФ, он накапливает огромное количество энергии равное 100 2200 2200/2 1000000 =242 (Дж) или 242 Вт/с которое, как справедливо отмечается в [4], легко пережигает лезвие отвертки.
Время разряда в основном определяется суммарным сопротивлением резисторов R28 R32, которое равняется.
R сумм= 120 4+10 = 490(ком)  (Соблюдайте последовательность вычислений, сначала 140 х 4 + 10= 490)
Длительность 95% разряда конденсатора определяется по формуле:

где t — в минутах, R — в мегаомах С — в микрофарадах Считаем t= 0,49 100/20=2,45 (мин), или примерно 3 мин.
Именно это время необходимо подождать, чтобы конденсатор емкостью 100 мкФ разрядился до 5% от его напряжения заряда (рабочего напряжения), те до 0,05 2200 = 110 (В), а лучше, для гарантии безопасной работы — минут пять.
Стабилизатор экранного напряжения выполнен на лампах VL1 и VL2. Схема на лампах гораздо надежнее транзисторной и имеет высокий коэффициент стабилизации. Кроме того, благодаря наличию резистора R41, который несколько уменьшает коэффициент стабилизации ,в нормальном режиме при прямом токе экранной сетки, происходит стабилизация напряжения экранной сетки и при ее обратном токе, что увеличивает линейность лампы по сравнению с паспортными данными и увеличивает надежность РА в целом. После выпрямителя, перед стабилизатором, включено реле перегрузки К16, которое разрывает цепь питания стабилизатора при превышении током потребляемым стабилизатором, величины, которая определяется током срабатывания реле К16 (108 мА).
Так как на катоде VL1 присутствует + 300 В, а на катоде VL2 — + 150 В, нити накала обеих ламп должны быть запитаны от отдельных, хорошо изолированных друг от друга и от корпуса обмоток.

Конструкция и детали усилителя

Усилитель выполнен в корпусе размерами 200x500x400 мм.
В этом же корпусе расположены все узлы блока питания, кроме анодного выпрямителя, который собран в отдельном корпусе размерами 300x300х300 мм.
Головка вольтметра анодного напряжения расположена на его передней панели.
Напряжение анодного питания подается посредством коаксиального кабеля с фторопластовой изоляцией, с наружным диаметром 9,3 мм и 75-омны-ми разъемами на обоих концах, так антенный разъем — 50-омный, в связи с чем исключается возможность перепутать места подключения антенного кабеля и кабеля анодного питания.
На задних стенках обоих корпусов стоят мощные клеммы заземления, через которые оба блока посредством чулка из оплетки толстого коаксиального кабеля соединяются между собой и заземляются.
В данном усилителе применена малошумящая высокоскоростная турбинка от японского ксерокопировального аппарата достаточной производительности и давления, расположенная на задней стенке РА и обозначенная на схеме блока питания как М1. Она закреплена на мягкой подвеске и соединена воздуховодом, который является одновременно экраном, расположенным под шасси, с панельками ламп VL1 и VL2 ГУ-74Б.
Под этим экраном расположены все детали, подходящие к электродам ламп усилителя, кроме анодных.
Кроме того, в процессе эксплуатации РА выяснилось, что следует поставить второй вентилятор, обозначенный как М2, работающий на вытяжку, в том случае, когда температура внутри корпуса РА начинает превышать +60°С, что случается при длительной работе на передачу полной мощностью.
Вентилятор М2 применен от компьютера, запитан напряжением +12 В через термореле К17 типа РБ-5-2 с биметаллической пластинкой, включающей вентилятор при достижении температуры внутри корпуса +60°С. Он установлен на задней стенке корпуса усилителя.
Все питающие и коммутационные напряжения подводятся через проходные конденсаторы, кроме, конечно, напряжения возбуждения, которое подводится коаксиальным кабелем диаметром около 4,5 мм от реле К1, расположенного вблизи входного разъема XW1 (рис 1).
Все детали, относящиеся к высокочастотному блоку соединены между собой шинками шириной 25 мм, которые нарезаны из луженой жести, от банок со сгущенным молоком (по бедности, желательно медь или латунь). Соединены шинками между собой катоды ламп, токосъемы конденсаторов переменной емкости, входящие в П-контур, антенный разъем земляная клемма, блокировочные конденсаторы в цепи анодного дросселя. Особенно тщательно следует соединить шинкой токосьемы КПЕ, заземляемые выводы дополнительных конденсаторов, подключаемые к ним и катоды ламп. Между точками заземления КПЕ и катодов ламп, не должно быть заземлений других идущих на корпус деталей.
Так как суммарная выходная (анод-катод) емкость двух ламп ГУ-74Б находится в пределах 18-26 пФ, значительная часть контурного тока (пример но половина на 28 МГц, а на низкочастотных диапазонах меньше) протекает по участку шины между анодным КПЕ и катодами ламп.
Катушка индуктивности L1 — шаровый вариометр, наружный диаметр которого равен 100 мм, выполнен посеребренной шинкой 1,5 х 2,5 мм, при параллельном соединении двух обмоток, индуктивность меняется в пределах 0,9-5,8 мкГн.
L2—диаметром 60 мм, длина намотки— 70 мм, число витков — 7, отвод — от второго витка, считая слева по схеме, намотана посеребренной трубкой диаметром 7,2 мм.
L3 — диаметром 85 мм, длина намотки — 140 мм, число витков — 12, выполнена из полированной алюминиевой трубки 0,7 мм, покрытой для предохранения от окисления бесцветным лаком или термоклеем.
Дроссель Др1 содержит 5 витков на оправке диам. 12 мм, длина намотки — 20 мм, отвод — от середины, выполнен из нихромовой проволоки 1,5 мм все его соединения — винтовые или паяные специальным флюсом.
Вместо нихрома можно применить медный провод, облуженный припоем, содержащим много свинца (ПОС-ЗО, например), чтобы его поверхностное сопротивление было как можно больше. Известно, что ВЧ-токи текут именно в поверхностном слое проводника, и чем выше частота, тем тоньше этот слой.
Сопротивление R2, выполнено из пяти параллельно соединенных сопротивлений МЛТ-2, по 510 Ом каждое. Конденсатор С8 — анодный, от передатчика РСБ-5, переделанный. Его передняя и задняя стенки выполнены из оргстекла, стеклотекстолита, фторопласта толщиной 8-10 мм, а четыре стяжки между ними — из текстолитовых стержней диаметром 8 мм.
С давних времен, с момента публикации конструкции усилителя КРС-81, по радиолюбительской литературе ходит ошибочное мнение, будто бы можно уменьшить начальную емкость КПЕ просто выфрезеровав квадратные отверстия во всех трех его стенках и крышке. К сожалению, это уменьшает начальную емкость всего на 1-3 пф. Если потребуется уменьшить начальную емкость до 8-12 пФ, то ось ротора надо приподнять над статором дополнительно на 10-12 мм, сместив положение оси ротора вправо или влево на 15-20 мм (закрепив ротор с эксцентриситетом), при этом конечная (максимальная ) емкость будет порядка 120-135 пФ. Чтобы убедиться в справедливости вышесказанного, достаточно измерить емкость КПЕ каким-либо прибором до и после вышеуказанных переделок.
Конденсатор С12 — антенный, от усилителя мощности радиостанции Р-140. Можно также применить КПЕ от радиоприемника УС-9. Конденсаторы С7, С9, С10, С23, С14 — типа К15-У, с реактивной мощностью 25 кВАр, С11 — четыре штуки параллельно, на рабочее напряжение 6 кВ и реактивной мощностью 7 кВАр, типа К15-У. С2, С4 — проходные конденсаторы, расположенные непосредственно на ламповой панельке, состоят из 10 штук конденсаторов емкостью 0,015 мкФ, включенных параллельно, С1, СЗ — такие же проходные конденсаторы, С5, С6 — проходные конденсаторы на ток 10 А. Дроссели Др4 и Др5 — от УМ-радиостанции Р-140, но можно применить и самодельные, намотав на каркасе диаметром 30 мм в один слой отрезок провода ПЭЛШО 0,65 мм длиной 4 метра. Катушки ФНЧ L4 и L5 — бескаркасные, содержат по 10 витков провода ПЭЛ 1,0 мм на оправке 9 мм, длина намотки — 14 мм.
Окончательно величина индуктивности, равная 0,56 мкГн, подгоняется при измерении, ее величины на каком-либо приборе, например, Е7-12А, путем сжатия-растяжения витков. Это достаточно ответственный момент, и от тщательности его проведения зависит величина КСВ на входе РА. Реле К1 и К2 — П1Д-1В. Реле КЗ —В1В-1Т1. Реле К4 К10 — "Торн", с тремя запараллеленными контактами.
Реле перегрузки К16 закреплено на стеклотекстолитовой пластине рядом со стабилизатором напряжения экранных сеток.
На схеме блока питания, блокировочные конденсаторы С1 и С2 в сетевом фильтре — проходные, но включены они не как обычно, на корпус, а между нулевым и фазовым сетевыми проводами, что не ухудшает фильтрацию, но зато на корпусе блока питания отсутствует напряжение сети с частотой 50 Гц, которое вызывается емкостными токами конденсаторов С1 и С2, и в самом неблагоприятном случае, при отсутствии заземления корпуса блока питания, может достигать 2,07 В на 1000 пФ емкости блокировочных конденсаторов.
Если бы мы применили обычную схему с четырьмя блокировочными конденсаторами, емкостью 0,047 мкФ, идущими на корпус, то через два из них, соединенных с фазовым сетевым проводом и шасси, тек бы емкостный ток с частотой 50 Гц, и на корпусе могло бы быть напряжение, равное 194,6 В.
Дроссели Др1 и Др2 выполнены на стеклотекстолитовых стержнях диаметром 16 мм, длиной 157 мм, намотаны проводом ПЭВ-2 диаметром 1,6 мм в один слой до заполнения стержня.
Конденсатор С12 — К75-40, 100 мкФ на 3 кВ.
Трансформаторы блока питания Т1 — ТН-56.
Т2 — с сердечником ШЛ25х50 I обмотка — 682 витка провода ПЭВ-2 0,8 мм, II — 1210 витков провода ПЭВ-2 0,25 мм, III — 20 витков провода ПЭВ-2 0,5 мм, IV — 40 витков провода ПЭВ-2 1,0 мм, V — 62 витка провода ПЭВ-2 1,0 мм, VI — 405 витков провода ПЭВ-2 0,3 мм.
ТЗ — габаритная мощность 2400 Вт, с сердечником ПЛ 40x80x160. Обмотки 1А и 1Б — по 110 витков провода ПЭВ-2 2,5 мм,IIА и IIБ — по 780 витков провода ПЭВ-2 1,0 мм. Между первичной и вторичной обмотками трансформатора ТЗ, проложен изолированный, не короткозамкнутый виток, выполненный из медной фольги, один из концов которого заземлен на шасси.
Если виток замкнуть, это приведет к выходу из строя трансформатора.
Можно также намотать один слой проводом 0,5 мм и один его конец запаять на шасси, но этот вариант обеспечивает несколько худшую экранировку.
Зачем нужен этот экран? Дело в том, что между первичной и вторичной обмотками силового трансформатора существует распределенная емкость (ее ориентировочная величина — 1 пФ/Вт, следовательно, в нашем случае она примерно равна 2400 пФ), и при плохой фильтрации высокочастотного напряжения по анодной цепи, (случай достаточно вероятный) ВЧ-напряжение через эту емкость попадет на первичную обмотку, а следовательно, и в электрическую сеть, что явно не вызовет положительных эмоций у соседей-телезрителей.




Ламповая панелька — самодельная. При аккуратном исполнении, она имеет отличный внешний вид и работает не хуже заводской, которая менее прочная и при интенсивной эксплуатации усилителя часто трескается и выходит из строя. Панелька изготовлена из листового стеклотекстолита толщиной 0,5 мм, заготовка которого со всеми необходимыми размерами и отверстиями показана на рис.3. Этот лист сворачивается в круглый цилиндр (трубу ) и склепывается двухмиллиметровыми медными заклепками по отверстиям b-b*, с-с* и d-d*. Между стеклотекстолитом и анодом лампы должно быть расстояние, равное 1,5 мм (высота головок заклепок), и ни в одной точке цилиндр не должен касаться анода лампы ГУ-74Б, иначе стеклотекстолит почернеет и сгорит от высокой температуры. Затем снизу и сверху цилиндра для придания ему дополнительной жесткости приклепываются две полоски шириной 8-10 мм из нержавеющей стали толщиной 0,5-0,7 мм. К нижней полоске приклепываются три уголка для крепления цилиндра к шасси. После этого к цилиндру медными двухмиллиметровыми заклепками по точкам 1, 2, 3, 4, 5, 6 одновременно снаружи приклепывается полоска из медной фольги шириной 6 мм и толщиной 0,3-0,5 мм, а к внутренней поверхности — изогнутые контакты от реле РКМ или любых других, на которые плотно садится кольцевой вывод экранной сетки лампы ГУ-74Б. Эскиз внешнего вида цилиндра панельки показан на рис.Зб. Если нет фирменного анодного колпачка, можно изготовить самодельный из полоски нержавеющей стали шириной 10 мм и толщиной 0,5-0,7 мм (рис.4). Практически это хомут, туго обжатый на оправке диаметром 10 мм, а затем с противоположного конца разрезанный и стянутый тугой пружинкой. Второй конец, как обычно, стягивается винтом МЗ с гайкой.


Для выводов лампы со стороны цоколя хорошо подходит панелька от старых радиоламп 2Ж27Л, 12Ж1Л, 4П1Л, которая устанавливается непосредственно на шасси, и вокруг нее в шасси сверлятся отверстия  8-10 мм. Между ними сверлятся другие отверстия меньшего диаметра — для получения максимальной суммарной площади отверстий с целью лучшего обдува лампы. Вентилятор устанавливается под шасси, на расстоянии 25 мм. Его производительность должна быть не менее 45 м3/час, так как потери давления при прохождении воздушного потока через отверстия в шасси, и особенно в аноде лампы, составят не менее 50%. Он устанавливается на мягкой подвеске (в поролоне) и закрепляется в отрезке цилиндра (трубы). Весь воздушный поток проходит через отверстия в шасси и охлаждает лампу.
Чтобы не ставить еще один дополнительный вентилятор, работающий на вытяжку, если хватает давления и производительности основного вентилятора, можно применить так называемую "самоварную" систему — на цилиндр панельки сверху надевают еще один цилиндр, точно входящий в отверстие в верхней крышке усилителя над лампой. Это отверстие закрывают сверху сеткой с проводящим покрытием и прижимают к крышке корпуса РА большой хромированной шайбой.
Эта система хорошо подходит для самодельных ламповых панелек, но может быть применена и для промышленных. При ее применении лучше работает система охлаждения, и нет необходимости ставить дополнительный вентилятор, работающий на вытяжку.
К полоске из медной фольги, приклепанной с наружной стороны цилиндра (рис 3), в местах клепки припаяны блокировочные конденсаторы по цепи экранной сетки, типа КСО-2 или СГМ-3 на рабочее напряжение 500 В. Конденсаторы соединены по три штуки в параллель, их емкость — 1000-1300 пФ — всего 18 конденсаторов, которые установлены в шести местах. Вторые выводы конденсаторов заземлены на лепестки, которые приклепаны (привинчены винтами МЗ) к шасси, после чего лепестки соединяются шинкой с катодами ламп.
Почему блокировочные конденсаторы выбраны такой емкости? Дело в том, что каждый конденсатор представляет собой последовательный колебательный контур, составленный из собственно емкости конденсатора и индуктивности его обкладок и выводов и, следовательно, имеющий частоту собственного резонанса, на которой его емкостное сопротивление равняется нулю, а выше этой частоты он работает уже как индуктивность.
Именно по этой причине выводы конденсаторов укорачивают до минимально возможной длины, и применяют конденсаторы на частотах в 2-3 раза меньше резонансной.
Конденсаторы данного типа имеют значительную собственную индуктивность, и применять их с большей величиной емкости не следует именно по вышеуказанной причине, а емкости указанной величины прекрасно работают в качестве блокировочных и недефицитны. Еще по одному блокировочному конденсатору емкостью 6800-10000 пФ, запаяно непосредственно на вывод экранной сетки на обеих ламповых панельках (вывод 5). Перед настройкой РА лампы необходимо "пожестчить" и потренировать. Вообще, по моему мнению, это несколько отличающиеся понятия, хотя обычно эти два процесса идут одновременно. "Жестчение" заключается в повышении электрической прочности, предотвращающем прострел лампы при ее первом включении, а тренировка — это восстановление эмиссионной способности катода, когда на лампу подают напряжение накала хотя бы на 10-12 часов. При этом, однако, происходит и "жестчение" лампы, когда при ее нагреве газы, просочившиеся внутрь баллона и выделившиеся ее электродами при их нагреве, поглощаются газопоглотителем (геттером), например, слоем частиц магния, бария или нераспыляющимся газопоглотителем. Поэтому, возможно, это вопрос терминологии.
"Жестчение" радиоламп подробно описано в [5].
"Жестчение", или тренировка, лампы должны обязательно производиться не только при первом включении лампы и после длительного перерыва в работе, но и каждые три месяца при хранении (что, к сожалению, нечасто выполняется на практике, особенно у радиолюбителей).
"Жестчение" ламп(ы) производят в РА, где и должна работать лампа.
Вначале, особенно если лампы хранились очень долго (более 10 лет), их выдерживают несколько суток (2-5) под напряжением накала в режиме пониженного обдува, каждые 18-24 часа выключая напряжение накала и хорошо охлаждая лампу, чтобы газопоглотители, которые находятся внутри лампы, хорошо прогрелись и поглотили газы, которые просочипись внутрь баппона через места спаек различных материалов и сам балпон лампы. Это также стабилизирует и восстанавливает эмиссионную способность катода. Все сетки при этом замкнуты на корпус.
После этого включают анодный трансформатор через 9-амперный лабораторный автотрансформатор. На управляющую сетку подается попное напряжение смещения, экранная сетка остается на корпусе, в анодную цепь пампы включается допопнитепьный токоограничивающий резистор сопротивпением 10 кОм и мощностью 20-25 Вт, переменное напряжение на его первичную обмотку подается начиная с уровня 2-10 В, каждый раз его увеличивают на 20 В и выдерживают на каждой ступени 5-10 минут, переходя на следующую ступень при отсутствии признаков пробоя.
На последней ступени на аноде лампы будет полное напряжение, после чего в этом положении усилитель выдерживается в течение 6-12 часов.
Затем на экранную сетку включают пониженное напряжение, примерно 50-70% от номинального (при помощи R38 в стабилизаторе, рис 2), убирают токоограничивающий резистор в анодной цепи и подают на анодный трансформатор ТЗ переменное напряжение, начиная с 50 В (на аноде при этом будет 500 В), следя за тем, чтобы напряжение на аноде всегда было больше экранного.  Поднимая напряжение ступенями по 10 В и выдерживая на каждой 5-10 минут, доводят анодное напряжение до полного и выдерживают в течение 10-12 часов. После этого изменением напряжения смещения управляющей сетки, выставляют небольшой начальный ток анода каждой лампы (по 30 50 мА), и давая уже полный обдув, выдерживают лампы в течение 3-5, а лучше 10-12 часов.
После этого устанавливают 50% анодного напряжения, дают такую раскачку (напряжение возбуждения), чтобы ток анода был равен 50% от номинального тока анода, затем настраивают П-контур и работают примерно с 25% отдаваемой мощности в течение 12-20 дней.
При этом эквивалентное сопротивление лампы Roe не изменится, следовательно, П-контур и в этом случае будет оптимальным.
После этого можно работать с полной мощностью.
Конечно, этот процесс долог и утомителен, но дает наибольшие гарантии того, что лампа войдет в строя и будет работоспособной продолжительное время, т.е отработает гарантированный заводом-изготовителем ресурс. В случае острой необходимости, процедуру можно значительно сократить, особенно последние пункты, но это крайне нежелательно, так как возрастет риск выхода ламп(ы) из строя.
Настройка РА сводится к проверке правильности монтажа, контролю отсутствия коротких замыканий, особенно в высоковольтном выпрямителе, наличия всех необходимых напряжений, порядка срабатывания всех реле, работы электронного ключа и холодной настройке П-контура [6, 7].
Кстати, автор основополагающей публикации [6], Ф.Козлов, UA4LK, ныне покойный, свою статью в те времена опубликовал под фамилией жены, когда из-за жалоб соседей по дому на помехи TV был закрыт на полгода.
Высоковольтный (анодный) выпрямитель проверяется при помощи делителя напряжения, собранного в корпусе от делителя к старому прибору АВ05-М, и авометра Ц4313.
Либо, если нет делителя напряжения, лабораторным автотрансформатором понижаем напряжение на первичной обмотке в три-четыре раза, при этом напряжение на вторичной обмотке понизится также в три-четыре раза, и его можно будет измерить авометром без делителя, а затем умножить на те же три-четыре раза.
Особое внимание следует уделить подбору двух радиоламп ГУ-74Б, которые должны быть близки по параметрам, работать в одном режиме и синфазно. Поэтому монтаж РА, относящийся к лампам, должен быть произведен максимально симметрично.
Здесь дело облегчается тем, что на входе у каждой лампы есть свой ФНЧ, и требование симметричности относится только к подключению колебательной системы, что при данном выполнении антипаразитного дросселя Др1 не составляет большого труда.
Подбор ламп является очень непростым делом. Лампы имеют большую крутизну, и ее разброс может быть очень значительным, а ведь именно крутизна характеристики является определяющим фактором идентичности характеристик. Подбирать надо уже оттренированные лампы, выдержанные с током, равным одной трети тока покоя (100 мА), не менее 24...48 часов. Наиболее простой путь подбора ламп — это подбор их по одинаковому начальному току при равном напряжении смещения.
Однако одинаковый начальный ток не дает гарантию идентичности анодно-сеточных характеристик радиоламп, так как их характеристики могут разойтись после пересечения в точке, соответствующей току покоя.
Совершенно необходимо снять их характеристики опытным путем. Для этого кратковременно, чтобы не перегреть, подаем поочередно на каждую лампу 10, 20, 35, 50 и 75% напряжения возбуждения, записывая каждый раз величину анодного тока. При этом вторую лампу можно не вынимать из панельки, а просто отключать у нее экранное напряжение.
Затем вычерчиваем зависимости анодного тока обеих ламп на одной и той же системе координат. Получаем два графика, пример которых приведен на рис.5. Если графики идут параллельно друг другу, но смещены влево или вправо один относительно другого, значит, у ламп одинаковая крутизна, и их характеристики можно совместить, регулируя напряжение смещения отдельно у каждой из ламп. Для этой цели в схеме блока питания усилителя предусмотрено их раздельное регулирование при помощи переменных резисторов R4 и R7. Смещение регулируем таким образом, чтобы у каждой лампы значение тока покоя было равно рекомендованному значению (по 300 мА), у одной лампы при этом напряжение смещения будет больше или меньше, чем у другой.

Окончательно токи покоя устанавливаются по минимальным нелинейным искажениям. Но если нет выбора, и в наличии всего две лампы с разной крутизной, то надо уравнять их по отдаче, а следовательно, по степени их нагрева, для чего, при максимальной раскачке, потенциометрами смещения R4 и R7 выставляют одинаковые анодные токи. При этом следят, чтобы суммарная величина значений токов покоя была равна удвоенному рекомендованному значению (600 мА). Начальные токи у каждой из ламп будут при этом разные.
В заключение можно порекомендовать эксплуатировать РА совместно с лабораторным автотрансформатором на 9 А. С его помощью, при изменении величины напряжения в сети переменного тока ,можно поддерживать номинальные величины напряжений. Особенно это касается напряжения накала ламп.
Литература

1. А. Кузьменко. Ламповые усилители мощности. — Радиолюбитель. KB и УКВ, 1999, N4.
2. А. Беспалый, С.Прохоров. Применение в выходном каскаде усилителя мощности ламп с высокой крутизной. — Радиолюбитель, 1995, N9.
3. И. Гончаренко. КСВ-метрдля усилителя мощности. — Радиолюбитель. KB и УКВ, 1999, N11.
4. И. Гончаренко. Разряд конденсатора в БП лампового РА. — Радиолюбитель. KB и УКВ, 1996, N11.
5. А. Кузьменко. Усилитель мощности на ГУ-43Б с драйвером на двух 6Э5П. — Радиомир. KB и УКВ, 2002, N8.
6. Л. Евтеева. "Холодная" настройка П-контура передатчика. — Радио, 1981, N2.
7. Ю. Куриный. О помехах телевидению. — Радио, 1983, N10.
 
Категория: Усилители КВ и УКВ | Добавил: ux7mx (25.04.2011)
Просмотров: 66819 | Рейтинг: 4.0/4
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
 
 
Выбрать язык / Select language:
Ukranian
English
French
German
Japanese
Italian
Portuguese
Spanish
Danish
Chinese
Korean
Arabic
Czech
Estonian
Belarusian
Latvian
Greek
Finnish
Serbian
Bulgarian
Turkish
  Ссылки  
 
 
 Сервер Кубанскик радиолюбителей
 Сервер радиолюбителей России - схемы, документация,
 соревнования, дипломы, программы, форумы и многое другое!
\
 Персональный сайт UX3MZ
 
 
 Personal page DL2KQ-EU1TT
 
\Электрик
 Сайт RA4CBH - Russian Contest Log, антенны, радиосвязь, QSL, КВ аппаратура, радиоспорт, справочники, статьи, полезные программы, объявления, MixW, ремонт TV и др.
 
 Сайт радиолюбителей Республики Коми
 Персональный сайт R7KK 
 Сервер Тамбовских Радиолюбителей
 Радиоклуб Орловский эфир. Региональное общественное объединение
 R-Quad - радиолюбительские антенны 
 
 Все для начинающего радиолюбителя 
 Наш, радиолюбительский сайт! 
 Благотворительная организация «СИЯНИЕ НАДЕЖДЫ»